Skip to main content

Cold Laser Therapy/Low Intensity Laser Therapy

Cold laser therapy is an advanced treatment used at our chiropractic care center. It involves using a laser to administer particles of light energy into the cells of you back. Your cells then use this energy to fuel the healing process by decreasing pain, improving blood flow, and reducing swelling. When more traditional back pain relief treatments are unsuccessful, you may be a candidate for low level laser therapy. During this treatment the chiropractor will hold a laser over the treatment area for up to a minute at a time, allowing non-thermal photons of light to pass through your skin. This light will be absorbed by your cells and then be used as an energy source, helping them to become healthier and function better. Low level laser therapy can be used to treat many different disorders, such as tears in muscles, arthritis, back and neck pain, and fibromyalgia.

Laser Therapy Treatment in Dallas, Texas

An Epidemic of Pain

Pain is one of the top health problems in the United States. An estimated 50 million Americans live with chronic pain caused by disease, disorder or accident. An additional 25 million people suffer acute pain resulting from surgery or accident. Approximately two thirds of these individuals in pain have been living with this pain for more than five years. The most common types of pain include arthritis, lower back, bone/joint pain, muscle pain and fibromyalgia. The loss of productivity and daily activity due to pain is substantial. In a study done in 2000, it was reported that 36 million Americans missed work in the previous year due to pain, and that 83 million indicated that pain affected their participation in various activities. People with chronic pain have difficulty finding doctors who can effectively treat their pain. The Chronic Pain in America: Roadblocks to Relief study found that one out of four pain patients had changed doctors at least three times, reporting that the primary reason for change was that they still experienced pain.
New Treatment Options with Laser Therapy
Laser therapy is a safe, pain free treatment that only takes a few minutes per visit. Laser Therapy does not require the use of drugs or surgery, and there are no side effects or risks that may occur with other forms of treatment. In addition, it can often achieve results faster and better than other treatment modalities. Many conditions show signs of improvement in even the first or second treatments. The primary mechanism of laser therapy is photobiomodulation which causes a stimulation of cells and tissue repair that is based on scientific research which has demonstrated positive physiological effects of infrared wavelengths on cellular organelles and electron chain molecules.
Research Results from Laser Therapy
  • Injuries treated with laser therapy heal faster
  • Laser Therapy has a strengthening effect on tissue repair
  • Laser Therapy improves blood flow & lymphatic drainage
  • It is an effective means of relief for many pain syndromes
  • It can improve immune response
HOW LASER THERAPY WORKS Overview
  • Photo-Chemical Action
  • Role of Chromophores
  • Summary of the Photochemical Process
  • Acute Inflammation Reduction – How does Laser Therapy reduce inflammation?
  • Analgesia – How does Laser Therapy reduce pain?
All light is composed of photons. Photons are small packets of light energy—in the form of waves— with a defined wavelength and frequency. Photon energy is able to more effectively penetrate the skin and underlying structures, therefore accelerating the healing process. Light travels at a constant speed and oscillate up and down as it moves forward. However, all light is not the same. It is measured in wavelengths, with each wavelength of light representing a different color of the spectrum. The number of oscillations per second represents the frequency of each wavelength; shorter waves have a greater frequency than longer waves. Laser energy is coherent (well-ordered photons), monochromatic (single-color) light energy. When produced as a narrow, bright beam. Laser light holds its intensity until it is absorbed by a medium (the body). When applied to an organism, Laser light, tuned to specific wavelengths and frequencies, stimulates metabolic processes at the cellular level. Photo-Chemical Action Studies have shown that when tissue cultures are irradiated by Lasers, enzymes within cells absorb energy from laser light. Visible (red) light and Near Infrared (NIR) are absorbed within the mitochondria and the cell membrane. This produces higher ATP levels and boosts DNA production, leading to an increase in cellular health and energy. When applied as treatment, therefore, Lasers have been shown to reduce pain and inflammation as well as stimulate nerve regeneration, muscle relaxation and immune system response. Lasers have no effect on normal tissues, as photons of light are only absorbed and utilized by the cells that need them. Role of Chromophores Chromophores are components of various cells and sub-cellular organelles which absorb light. The stimulation of Chromophores on mitochondrial membranes incites the production of ATP rusulting in:
  • Increases cellular energy levels
  • Allows pain relief
  • Accelerates cellular healing
Summary of the Photochemical Process:
  • Photons
  • Absorbed in Mitochondria and Cell Membrane within cytochromes and Porphyry’s
  • Singlet Oxygen is Produced
  • Changes in Membrane Permeability
  • ATP Synthesized and DNA Produced
  • Increase in Cell Metabolism from a Depressed Rate to a Normal Level
  • Selective Bio-Stimulatory Effect on Impaired Cells
  • (note cells and tissues functioning normally are not affected
Acute Inflammation Reduction – How do Lasers reduce inflammation? Summary of Light Induced, Anti Inflammatory Responses
  • Stabilization of the cellular membrane
  • Enhancement of ATP production and synthesis
  • Stimulation of vasodilation
  • Acceleration of leukocytic activity
  • Increased prostaglandin synthesis
  • Reduction in interleukin 1
  • Enhanced lymphocyte response
  • Increased angiogenesis
  • Temperature modulation
  • Enhanced superoxide dismutase (SOD) levels
  • Decreased C-reactive protein and neopterin levels

1. Stabilization of the cellular membrane

  • Ca++, Na+ and K+ concentrations, as well as the proton gradient over the mitochondria membrane are positively influenced.
  • This is accomplished in part, by the production of beneficial Reactive Oxygen Species aka (ROS).
  • These ROS’s modulate intracellular Ca++ concentrations and laser therapy improves Ca++ uptake in the mitochondria.

2. Enhancement of ATP production and synthesis

  • . ATP production and synthesis are significantly enhanced, contributing to cellular repair, reproduction and functional ability
  • . Photonic stimulation of Cytochrome c Oxidase, a chromophore found on the mitochondria of cells, plays a major role in this rapid increase in production and synthesis of ATP.

3. Stimulation of vasodilation

  • . Vasodilation is stimulated via an increase in Histamine, Nitric Oxide (NO) and Serotonin levels, resulting in reduction of ischemia and improved perfusion
  • . Laser-mediated vasodilation enhances the transport of nutrients and oxygen to the damaged cells and facilitates repair and removal of cellular debris.

4. Acceleration of leukocytic activity

  • . Beneficial acceleration of leukocytic activity, resulting in enhanced removal of non-viable cellular and tissue components.
  • . Thus allowing for a more rapid repair and regeneration process.

5. Increased prostaglandin synthesis

  • . Prostaglandins have a vasodilating and anti-inflammatory action

6. Reduction in interleukin 1

  • . Laser irradiation has a reducing effect on this pro-inflammatory cytokine that has been implicated in the pathogenesis of rheumatoid arthritis and other inflammatory conditions.

7. Enhanced lymphocyte response

  • In addition to increasing the number of lymphocytes, laser irradiation mediates the action of both lymphatic helper T-cells and suppressor T-cells in the inflammatory response.
  • Along with laser modification of beta cell activity, the entire lymphatic response is beneficially affected by laser therapy.

8. Increased angiogenesis

  • Both blood capillaries and lymphatic capillaries have been clinically documented to undergo significant increase and regeneration in the presence of laser irradiation.

9. Temperature modulation

  • Areas of inflammation typically demonstrate temperature variations, with the inflamed portion having an elevated temperature.
  • Laser therapy has been shown to accelerate temperature normalization, demonstrating a beneficial influence on the inflammatory process.

10. Enhanced superoxide dismutase (SOD) levels

  • Laser stimulated increases in cytokine SOD levels interact with other anti-inflammatory processes to accelerate the termination of the inflammatory process.

11. Decreased C-reactive protein and neopterin levels

  • Laser therapy has been shown to lower the serum levels of these inflammation markers, particularly in rheumatoid arthritis patients

Analgesia – How does Laser Therapy reduce pain?

Summary of Light Induced, Analgesic Responses

  • Increase in beta endorphins
  • Increased nitric oxide production
  • Decreased bradykinin levels
  • Ion channel normalization
  • Blocked depolarization of C-fiber afferent nerves
  • Increased nerve cell action potentials
  • Increased release of acetylcholine
  • Axonal sprouting and nerve cell regeneration
1. Increase in beta endorphins
  • The localized and systemic increase of this endogenous peptide, after laser therapy irradiation has been clinically reported in multiple studies, to promote pain reduction.
2. Increased nitric oxide production
  • Nitric oxide has both a direct and indirect impact on pain sensation. As a neurotransmitter, it is essential for normal nerve cell action potential in impulse transmission activity.
  • And indirectly, the vasodilation effect of nitric oxide can enhance nerve cell perfusion and oxygenation.
3. Decreased bradykinin levels
  • Since Bradykinins elicit pain by stimulating nociceptive afferents in the skin and viscera, mitigation of elevated levels through laser therapy can result in pain reduction.
4. Ion channel normalization
  • Photobiomodulation promotes normalization in Ca++, NA+ and K+ concentrations, resulting in pain reduction as a result of these ion concentration shifts.
5. Blocked depolarization of C-fiber afferent nerves
  • The pain blocking effect of therapeutic lasers can be pronounced, particularly in low velocity neural pathways, such as non-myelinated afferent axons from nociceptors.
  • Laser irradiation suppresses the excitation of these fibers in the afferent sensory pathway.
6. Increased nerve cell action potentials
  • Healthy nerve cells tend to operate at about -70 mV, and fire at about -20 mV. Compromised cell membranes have a lowered threshold as their resting potentials average around this -20 mV range.
  • That means that normal non-noxious activities produce pain.
  • Laser therapy can help restore the action potential closer to the normal -70 mV range.
7. Increased release of acetylcholine
  • By increasing the available acetylcholine, Laser Therapy helps in normalizing nerve signal transmission in the autonomic, somatic and sensory neural pathways.
8. Axonal sprouting and nerve cell regeneration
  • Several studies have documented the ability of laser therapy to induce axonal sprouting and some nerve regeneration in damaged nerve tissues.
Where pain sensation is being magnified due to nerve structure damage, cell regeneration and sprouting may assist in reducing pain.

You Might Also Enjoy...

Common Ice Hockey Injuries and Chiropractic Care

Chiropractic care has several advantages for ice hockey players that should not be neglected. It also aids in the recovery of athletes who have experienced strains, sprains, or contusions while playing the sport.

About Knee Pain

Knee discomfort is a typical cause for our patients to come to us for treatment. Throughout the day, the knee is responsible for a variety of functions.

Shoulder Pain - Shoulder Impingement

You may be unaware of how much you depend on your shoulders on a daily basis until someone points it out to you. When it comes to shoulder injuries, if you've had one, you've undoubtedly noticed it, and in some cases, you've noticed it on a frequent basis.